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I INTRODUCTION 

In this report, the stability of a pinched fluia is studied 

theorqticaly, under the combined infhence of a longitudinal maenetic 

field and conducting exterior shell. Conditions allowing complete 

stability are found. 

The stabilizing effect of a conducting shell seems first to have 

been pointed out in 1953 (Tuck, Wash-146), and calculations of the 

general stabilizing effeut of a longitudina field in 1953 (Kruskal 

and Tuck, LA-1716) , whose notation we use in this report. Low power 

experiments (Wash-184r 1954) gave ng indication of beneficial effects 

from a longitudinal field, though it was realized that the pinch 

currents then available were scarceay adequate. 

Some unclassified qualitative calculations of the conducting shell 

were also available. in 1954 (Bostick, Levine, $t al . ? Tufts College, Note 

#14). 

of longitudinal field and conducting shell was obtained in 1954 (Kruskal, 

PMS-16) and independently, Rosenbluth, UCRL-1954; but its implications 

not f u l y  realized at the time. More recently (December, 195k), special 

An expression using magnetohydrodynamics for the combined effect 

advantages of an internal trapped longitudinal. field and 8 hollow cylindri- 

cal plasma were pointed out by Levine and Combs, Tufts College, Note #16, 

although their quantitative results disagree with those derived in this 

paper. At the Los Alamos Christmas, 1955, meeting, discussions between 

.a 



Colgate, Kruskal, Rosenbluth, Teller, and Tuck also emphasized this 

point. At the insistence of Colgate, 1956, the expression described 

above was evaluated, and this report presents these results. We also 

will calculate the stability criterion without the magnetohydrodynemics 

approximation. 

The geometry considered (see Fig. 1) is that of an infinite 

cylinder along the z-axis. Inside radius ro is the confined plasma 

at uniform pressure and density and containing uniform longitudinal 

field of magnitude o( 3 Outside the plasma I s  a region of vacuum 

extending to the perfect external conductor at radius firo. In the 

vacuum is a field with azimuthal component Bo -$ and longitudinal 

P 0 -  

r 

component ape. We consider perturbations which vary like [e i(kz 2 m q  
Our object is to find stable configurations, i.e., to discover for what 

values of the parameters o( p, txV and 

and k. 

the pinch is stable for all m 

.,external conductor 

.I 

Fig. 1 Geometry considered in this report. 



The method used to calculate the stability is to make the relevant 

virtual displacement and note whether the resulting pressure distri- 

bution at the plasma surface is such a8 to cause the displacement 

to grow. 

system. 

identical with that of Kruskal. 

parameters, o ( ~ ,  

This is equivalent to calculating the change of energy of the 

Our resulting expression in the magnetohydrodynamic case is , 

It says that for a given set of 

p ,  m, Y = kr , the pinch is stable if: 
0 

Km, Lm, and G are defined in terms of Bessel functions as A m  

The particle picture leads to a sl ightly different form 

(1 + 4d(p1 2 2  - p3'> 
YP 0 



Here p1 and p are components of the pressure tensor along and 3 
perpendicular to the field respectively and 

where f (p) represents the initial angular distribution of particle 
velocity relative to the z-axis. 

butlon S = p1 

practice, it is l i k e l y  that p > pl and Eq. 2 is then somewhat less 

favorable than Eq. 1. 

of Section V . 

For an initially isotropic distri- 

= 0 and Eq. 2 becomes identicaL with Eq. 1. In - p3 

3 
This is discussed In more detail at the end 



IT. PERIVATION OF THE EQUATION OF MOTION 

The equation goverqing the fteld change i s  

The second equation iq the p&asma is the equation expressing the 

fact that particres are tged to field ;Linea and move with the E x 

arif t . We define 

Then we way integrgte Eq, k to obtqln for the change in field 

where Bi is, the unperturbed field, 
d 

in term8 linear in the d%splaCement, 1. 
We are, of' course, interested only 

As we have mentioned egrliar, our method is t o  make a virtual 

displacement which, within eauh medium, preserves the equilibrium 

condition. Thus in the vacuum 



and in the plasma 

where g is  the pressure tensor of the plasma. 

In the magnetohydrodynamic approximation, Eq. 8 becomea 

= 0 .  

When we consider non-scalar effects Eq. 8 becomes 1 

A Here el i s  a unit vector 

the field. The pressure 

p3 
p=cl 0 O 

( 9 )  

along the field lines and b the magnitude o f  

tensor is of the well-known form 

1, See Los Alamos notes on ionized gases. 

C 



111. DETERMPNATIOPI OF THE PERTURBED VACUUM FIELD 

A and B are to be determined from the bounaary conaltlon ab tbe extsmn@l 

conduo tor qnd displeced p$aamrP interface 

3 3  
$ B * a = O  (14) 

or 

where we have assumed the Qisplacaa plaama Anterface i s  given by 



r = r  [ l + s e  - 
0 i ( k z c  mB'l 

We may now use Eq. 14' t o  determine the coefficients A and B i n  

Eq. 13. 

JA ( ik ro )  - [JA (ikpro)/HA ( ikpr;)  Hk (ikro) A =  

Finally, we calculate the change i n  pressure on the plasw surface 

result ing from the displacement 

The last term i n  Eq. 17 results from the evaluation of B o y  rO at the 

displaced radius. 

Using Eqs. l', 12, 13, and 16, we f ina l ly  get 

We note that  - 1 i n  Eq. 18 tends t o  give b Po the  opposite sign 

In other words, the pressure is  smaller where for the displacement. 



the sqrfecq I s  bulgsd  ut, tbya landin4 $0 iqstability. We must still, 

of coume, aalc?&nte 5 Pin the resultant pregsure inslde, i n  order to 

obWn the net reptqritq fwqe, 



1. " 

IV. PLASMA EQUATIONS IN MAGNETOHYDRODYNAMIC APPROXIMATION 

The equation of equilibrium in the plasma is given by Eqs.  6 and 

i. 
To evaluate 

+ 
v x  ( 1  

3 
x Bi) 

$ p we note 

x Bi - I +  V S P  = 0 

so tha t  we may f i n d  

-+ 
If we multiply Eq. 19 by B,, we obtain 

Since gi in the plasma is in the z direction and V *  4 for our per- 

turbation varies as ekz, we must have 



4 
In C Q s 8 i d ~ i n g  the qompQnente Qf Eq, 49 nqrmql to B, it I s  useful 

to use the vectqr identity 

aince B 0 comuteBwith v x  an6 ithe other l t s m  v~l;nisb. 

As before, this implges 

Finally, Eqs, 22 and 24 imply 



Finally,  we compute 

Bi 
S B ~  at r = r 0 

and recall that Bi = W B t o  obtain 
P O  

We are now prepared to write the s t a b i l i t y  coadikion 



V ADIABATIC TNVARIANT CALCULATION 

I;n applying Eq. 10, t h e  principgl problem is t h e  evaluation of 

$he changes i n  the pressure tengqr  brought aboqt by the deformation. 

These w i l l  be calculated by considering t h e  e f fec t  of the displakement 

on the o rb i t  of a s ingle  particle an4 then summing over a l l  orbi ts .  

Before the deformation, the rrumber of par t ic les  per cubic 

centimeter per unit  energy and solid angle is given by g(Eo)f(~)dEod~, 

Here E and ,a are the energy of the  par t ic les  and the  direction 

cosine of Its velocity vector w i t h  the z-axis before the displaceaent, 
0 

The aeiabatic invariants of the motion are  the magnetic momeet and 

the  action integral  (see footnote 1) 

Here $ Eo and 5 b ( l )  are the changes induced i n  E and B by t h e  di6- 

placement. Eland E are the o rb i t a l  energies perpendicqlar end pa ra l l e l  

t o  the f ield l$.nes. 
II 
d l  is  thq element of length alang the l ine .  

Relations 27 and 28 are related t o  conservation of angular 

momentum about the  f i e l d  directiog, and ocmservation of l i nea r  



momentum along the field lines. 

to be extended over a complete period of the perturbation, unless E,, 

goes tQ zero in which case the integral is to be extended between the 

turning points o f  the orbit. 

The integral on the left of Eq. 28 is 

Now the variation in field strength is given by 

& b = E (r) Bi cos (kz 2 mq). 

Along a given field, line r and 8 are constant while z varies. 
Hence, in Eq. 28, we may use R = (kz - + m e )  and 

so that Eq. 28 becomes 

Eq. 29 is the determining equation for SE. The alternative limits 

on the integral are to be used if the would be negative at 0 or 

2 I f .  

-16- 



Next we must write down the 

over par t ic les .  The equilibrium 

elrpression f o r  the psegsure as a sum 

equation i n  the directionG1, aloqg 

the l i nes ,  i s  automatically satisfied by th i a  approach, since it only 

means tha t  the pa r t i c l e s  aye movlw i n  o rb i t s  consistent wi th  Che 

magnetic f i e ld .  It i e  re la t ive ly  t r i v i a l  t o  verify t h i s  by d i r ec t  

computation, so we need only write down the expression for p3. By 

definit ion,  p3 is the energy density per cubic centimeter i n  the 

plane 1, t o  the field. The contribution of  the payticles i n  the range 

w i l l  be j u s t  the 4eneity of such par t i c l e s  times their per- dEodFo 
pendicular energy, given by Eq. 27. The density of such particleq is 

where 

. 
v = J l +  SE - 0 &cos  1 

I \  Eo r 2  
and the l i m i t s  on the integral are the $am a8 those i n  Eq. 29. 

The fac tor  (1 + e cos,(), the r a t i o  o f  magnetic f ield t o  in i t la l  

field, arises from the f a c t  that par t ic le8 are attached to  f ield l ines 

so that their density i s  proportiqnal t o  thp qensity of field l ines ,  

i.e., B. The last tern i n  Eq. 30 is  the fraction of Its time which the 

particle spends a t  a given posit ion of it;s orbit. Combining Eqs. 27 and 

30, we get 



B3 = 2 Y E o  g(E,) Bo / dpf(p) (1 - P2) (1 + E c08 1)2 2tr 

v I t  J dA/v,, F 0 

(31) 
In writing Eq. 31, we have assumed f ( f )  to be even. 2 is the angle 

at which v,, vanishes. 

Next we introduce 

and Eq. 29 becomes 

2 Tr ,2Tf -cos-% 

From Eq. 33, we get 

-18- 



Subatituting in Eq, 32 

We wish now to  evaluate Fq. 34 up t o  teps l inear i n  E since hieher 

order terms are not needed for our linearized equations, 
We may solve Eq, 33 for (1 - P 2 

We observe that 12($)* 'If- + . , as '1s-4~ and goes t o  zero at 3 
% -  -1 and $s f i n i t e  at all point6 between, Let us a l s o  expand 

Then 



We could then expand the last term in Eq. 35, since 

It is then clear that, aside from the 1, the other terms contribute 

to order E 3/2, hence may be neglected. 
We now reintroduce ,u by 

2 
E(% - cos 1 )  = (1 + &cos 1 )  + 

1 - P  
and expanding in powers of &,  we get 

*+/; (1 - P 1 n+l d i  

The first term is clearly just p , the initial pressure. The 
3i 

perturbation term may be written, remembering & b = Bi E cos 1 

(37) 

Jo 
where s is a shape factor, dependent on the initial plasma angular 

distribution. s vanishes for an initially isotropic distribution and 

is positive for a distribution with motion predominantly along the 

-20- 



field lines. Currently favored means of heating, by sidewise compression, 

m4y tend to make s negative. 

We now return briefly to the derivation o f  the stability criterion 
i(kz 2 m q )  in this case. Using Eqs. 6 ,  $0, 38, rand the fact that \ NN e ? 

we may write for the equations of equilibrium in the directions per- 

pendicular to the field 

* 

Here 

As we have remarked before, equilibrium along the field lines is assured 

by a particle orbit method such as we are using. 

We a l s o  note that l 2  does not occur in our equations so we may 

choose I$ arbitrarily 80 that 

where v2 is the two-dimenelonal operator on T and f 
We also note that 



The first term in Eq, 39 becomes on use of vector identities2 

Doing the same sort of manipulations on the rest of the equation 

and throwing away components in the z direction, we get 

The solution of Eq. 41 is 

Again the determination of A come8 from Eq. 15, the condition 

2, See, for exasple, Margenau and Murphy, Mathematics & Physic6 q,& 
Chemistry, p. 148, 

-22- 



Finally, we must ,determine 

Using Eq. 18, we finally obtain the stability criterion 

As we have remarked, thXs reduces to the magnqtohydrgdynamic resylt, 

Eq. 1, for an isotropic distribution. In practice, with heating by side- 

wise compresslon, the distribu$ion ;Is likely to be peaked towards /=  0. 

In general, this appears h4rmfUl to stabikity. 

Of course, for W 2  close to unity, we may expect the magneto- 
P 

hydrodynamic theory tg be valid. 

The unfavorable results occurring from having p lsrge can be 3 
underetood physically, since particlea with ,& close to zero w e  

restricted by the mirror effect to the region of weak field and thus 

are reduced in energy by the perturbation. 



It is interesting to note that the "no-heat flow'' approximation, 3 

- d kB2) 
d ('3) dt vr = d z  6 

seems to give erroneous results in this case. It yields Eq. 2 with 

a much more favorable result. 

It is perhaps worth remarking explicitly that the calculations we 

have made refer to both ions and electrons. If they have the same 

initial angular distribution, then they will have the same density 

along the lines after the deformation, and no space charge will be 

developed. 

necessary to modify the adiabatic invariants to include space charge 

forces. 

If their angular distribution is different, it would be 

The effect of this is obscure to me, 

There may also be some question whether surface effects have been 

treated adequately here. However, the change in energy of the surface 

must be small in the ratio of Larmor radius to radius of the pinch. 

The whole adiabatic invariant theory, of course, depends on small 

Larmor radius, so this is consistent with our assumptions. 

We now turn to exploration of the meaning of Eq. 1. 

3. See footnote 1. 

" ____"---- --- .~ 
. -  



VI. DISCUSSION OF RESULT4 

First we consider briefay the naCure of the f‘qnctlons f%gpsariQg 

in Eq. 1. 

Also, as be verified by bubstitution, K and L both satisfy $he 

differential equation 

As Y 3- Km = - Lm 4 y o  1 

A l a o j  as a rough indication of behavior, one msy aons&der 

This is quite good for IU 2 P, fair for m o 1 and pogr fw m = 0. 

We now break up the discuaglon and consider cases of different L 

eeparately. 



A. m = O  

Here the equation becomes 

It is easy to show 

We have also shown that the whole expression on the left of E q .  47 

has positive derivative at Y = 0 and Y = 00 for all 4 .  
plausible to assume th i s  is so fo r  a l l  Y, though we hare not proved it. 

It seems 

Substituting Y = 0 in Eq. 47, we fin&, using the limiting forms of the 

Bessel functions, 

We may also, at this point, write down the trivial equation for 

the existence of an equilibrium 



B. m 2 2  

Let us denote the lef t  hand s ide of Eq. 1 8 s  F(o( NV, rq, Y, 8).  P’ 
Then we note that, 

Uence, if the pinch i s  stable f o r  f i=  06, it is cer tainly stable 

for all f i n i t e  f l  For p =  00 the s t a b i l i t y  condition, Eq. 1, becomes 

Gince we 

suf f ic ien t  t o  

y2 K,(Y) - (m - 
are looking f o r  

2 consider the -sign i n  (rn + OI Y) . - v  
A t  Y = 0, Lm(Y) = - - so Eq. 50 is cer ta inly satisfied. m 

it is 

A t  Y - W, 

since -Lm = Km = 1/Y, it is a lso  satisfied. 

for  a given m and qv, i t  is  possible t o  find an  o( 

is satisfied f o r  all Y if o( > o( 

Hence, it i s  clear  tha t  

such tha t  Ea. 50 

Let us suppose we have done t h i s  
PO 

P- Po 
for m * 2, i.e., we have found o( such tha t  

PO 

for all Y. 

We w i l l  now show that Eq. 50 must also be satisfied f o r  a l l  

m > 2 .  



First we introduce Y = my' and rewrite Eq. 50 as 

Hence, if we can show 

m 2  - (5) LJ; Y') > - L2(Y') 

then EQ. 50 must be satisfied for a l l  m, Y in virtue of the fact it is 

satisfied for m = 2. 
2 

L e t  (;) Km(S Y )  = k,(Y). 

From Eq. 45, we have 

A t Y = O  

1 
K2 = 5 

Solving Eq. 53, we may write 



Y 

0 .1 25 .5 1 

.067 .122 .222 A62 1.260 

c-. 

i k 

Vll 

+;-z > o  
I1 

k 

(54) 

cl 

A similar procedure may be applied t o  t h e  consideration of Lm. 

Thus we have proved Eq. 52 a d  hence need only s a t i s f y  Eq. 50 f o r  

m = 2 and p -  00 t o  get a suf f ic ien t  condition fo r  s t a b i l i t y  of all 

higber m. The prgcedure used t o  do t h i s  is the  same as t h a t  to  be 

described f o r  m = 1. 

The results are shown i n  Teble I. 

Table I -- Sufficient Condition f o r  m 2 2 Stab i l i t y  

By comparison with the figures of s t a b i l i t y  regions a t  t h e  end of 

t h i s  mport ,  it may be seen t h a t  any system stable against m = 0, 1 

appears to be stable for the higher modes. 

C. m = l  

For m = 1, our Eq. 1 becomes 



P 

(55) 

Again it may be easily seen by looking at the WymptotlC forms 

that for any cy p, WV,, Eq. 55 must be satisfied at Y = 0 and 00.  

At Y = 0, it is the effect of G 

for stability. 

appearance of the factor (1 - o(vY)2 ,  there is a region af wavelength 

where the perturbation just fits the corkscrew of the external field 

tending to make for poor stability. 

the external conductor, which makes 
/,l' 

At Y = 00, it is the longitudinal fields. Dde to the 

It is also easily seen from Eq. 55 that for a given o( and 

satisfy 

V 

one can find an & 

Eq. 55 for all Y. 

8, then solve Eq. 55 for q 2  as a function of Y. The resulting curve 

Cxv at Y = 00 , with a maximum in 

, since for this value 

such that all greater values of o( 
P 

The method of calculation used was to fix aV and 

P 
2 gives ap 2 = --at Y = 0 and # 2 = - 

P 
between. 

of q , there is only one wavelength which is neutrally stable. 
The value of this maximum is then a 

PO 

P 
These calculations were performed by Mrs. Josephine Powers to 

whom many hearty thanks are due. 

define a region of stable pinch configuration. 

in Figs. 2-6, which show the cy 

1. 

Together with Eqs.  48 gndl,bg, they 

These regions are shown 

B plane for QV = 0, .l, .25, . 5 ,  and 
P' 

In conclusion, we are led to expect that quite reasonable com- 

pressions and fields lead to a stable configuration. In practice, 



o f  cwrsd, we must use a torus rather than an infinite cylinder t o  

eliminate end losses, and one evenCually must calculate in Chis 

geometry. 

should rsuffice, 

maJor to minor radius, o w  results shoul,d apply. 

From what we have seen, ~t mqgnetohydrodynamic calculation 

It seem6 clear, however, that for tor i  with large 

, ., -.--..- 
__I___ - .  . 
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